Slant Helices in Euclidean 4-space E
نویسندگان
چکیده
We consider a unit speed curve α in Euclidean four-dimensional space E and denote the Frenet frame by {T,N,B1,B2}. We say that α is a slant helix if its principal normal vector N makes a constant angle with a fixed direction U . In this work we give different characterizations of such curves in terms of their curvatures. MSC: 53C40, 53C50
منابع مشابه
Generalized Helices and Singular Points
In this paper, we define X-slant helix in Euclidean 3-space and we obtain helix, slant helix, clad and g-clad helix as special case of the X-slant helix. Then we study Darboux, tangential darboux developable surfaces and their singular points. Especially we show that the striction lines of these surfaces are singular locus of the surfaces.
متن کاملSome Characterizations of Slant Helices in the Euclidean Space E
In this work, the notion of a slant helix is extended to the space E. First, we introduce the type-2 harmonic curvatures of a regular curve. Thereafter, by using this, we present some necessary and sufficient conditions for a curve to be a slant helix in Euclidean n-space. We also express some integral characterizations of such curves in terms of the curvature functions. Finally, we give some c...
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملSome Characterizations of Slant Helices in the Euclidean Space En
Inclined curves or so-called general helices are well-known curves in the classical differential geometry of space curves [9] and we refer to the reader for recent works on this type of curves [6, 12]. Recently, Izumiya and Takeuchi have introduced the concept of slant helix in Euclidean 3-space E saying that the normal lines makes a constant angle with a fixed direction [7]. They characterize ...
متن کاملASSOCIATED CURVES OF THE SPACELIKE CURVE VIA THE BISHOP FRAME OF TYPE-2 IN E₁³
The objective of the study in this paper is to define M₁,M₂-direction curves and M₁,M₂-donor curves of the spacelike curve γ via the Bishop frame of type-2 in E₁³. We obtained the necessary and sufficient conditions when the associated curves to be slant helices and general helices via the Bishop frame of type-2 in E₁³. After defining the spherical indicatrices of the associated curves, we obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009